Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Diffuse ionized gas pervades the disk of the Milky Way. We detect extremely faint emission from this Galactic warm ionized medium (WIM) using the Green Bank Telescope to make radio recombination line (RRL) observations toward two Milky Way sight lines: G20, (ℓ,b) = (20°, 0°), and G45, (ℓ,b) = (45°, 0°). We stack 18 consecutive Hnαtransitions between 4.3 and 7.1 GHz to derive 〈Hnα〉 spectra that are sensitive to RRL emission from plasmas with emission measures EM ≳ 10 cm−6pc. Each sight line has two Gaussian-shaped spectral components with emission measures that range between ∼100 and ∼300 cm−6pc. Because there is no detectable RRL emission at negative LSR velocities, the emitting plasma must be located interior to the solar orbit. The G20 and G45 emission measures imply rms densities of 0.15 and 0.18 cm−3, respectively, if these sight lines are filled with homogeneous plasma. The observed 〈Hnβ〉/〈Hnα〉 line ratios are consistent with LTE excitation for the strongest components. The high-velocity component of G20 has a narrow line width, 13.5 km s−1, that sets an upper limit of ≲4000 K for the plasma electron temperature. This is inconsistent with the ansatz of a canonically pervasive, low-density, ∼10,000 K WIM plasma.more » « less
-
Abstract The ideal spectral averaging method depends on one’s science goals and the available information about one’s data. Including low-quality data in the average can decrease the signal-to-noise ratio (S/N), which may necessitate an optimization method or a consideration of different weighting schemes. Here, we explore a variety of spectral averaging methods. We investigate the use of three weighting schemes during averaging: weighting by the signal divided by the variance (“intensity-noise weighting”), weighting by the inverse of the variance (“noise weighting”), and uniform weighting. Whereas for intensity-noise weighting the S/N is maximized when all spectra are averaged, for noise and uniform weighting we find that averaging the 35%–45% of spectra with the highest S/N results in the highest S/N average spectrum. With this intensity cutoff, the average spectrum with noise or uniform weighting has ∼95% of the intensity of the spectrum created from intensity-noise weighting. We apply our spectral averaging methods to GBT Diffuse Ionized Gas hydrogen radio recombination line data to determine the ionic abundance ratio,y+, and discuss future applications of the methodology.more » « less
-
Abstract The Green Bank Telescope Diffuse Ionized Gas Survey (GDIGS) traces ionized gas in the Galactic midplane by observing radio recombination line (RRL) emission from 4 to 8 GHz. The nominal survey zone is 32.°3 >ℓ> −5°, ∣b∣ < 0.°5. Here, we analyze GDIGS Hnαionized gas emission toward discrete sources. Using GDIGS data, we identify the velocity of 35 Hiiregions that have multiple detected RRL velocity components. We identify and characterize RRL emission from 88 Hiiregions that previously lacked measured ionized gas velocities. We also identify and characterize RRL emission from eight locations that appear to be previously unidentified Hiiregions and 30 locations of RRL emission that do not appear to be Hiiregions based on their lack of mid-infrared emission. This latter group may be a compact component of the Galactic Diffuse Ionized Gas. There are an additional 10 discrete sources that have anomalously high RRL velocities for their locations in the Galactic plane. We compare these objects’ RRL data to13CO, Hi,and mid-infrared data, and find that these sources do not have the expected 24μm emission characteristic of Hiiregions. Based on this comparison we do not think these objects are Hiiregions, but we are unable to classify them as a known type of object.more » « less
-
Abstract Standard stellar evolution models that only consider convection as a physical process to mix material inside of stars predict the production of significant amounts of3He in low-mass stars (M< 2M⊙), with peak abundances of3He/H ∼ few × 10−3by number. Over the lifetime of the Galaxy, this ought to produce3He/H abundances that diminish with increasing Galactocentric radius. Observations of3He+in Hiiregions throughout the Galactic disk, however, reveal very little variation in the3He abundance with values of3He/H similar to the primordial abundance, . This discrepancy, known as the “3He problem,” can be resolved by invoking in stellar evolution models an extra mixing mechanism due to the thermohaline instability. Here we observe3He+in the planetary nebula (PN) J320 (G190.3–17.7) with the Jansky Very Large Array to confirm a previous3He+detection made with the Very Large Array that supports standard stellar yields. This measurement alone indicates that not all stars undergo extra mixing. Our more sensitive observations do not detect3He+emission from J320 with an rms noise of 58.8μJy beam−1after smoothing the data to a velocity resolution of 11.4 km s−1. We estimate an abundance limit of3He/H ≤ 2.75 × 10−3by number using the numerical radiative transfer code NEBULA. This result nullifies the last significant detection of3He+in a PN and allows for the possibility that all stars undergo extra mixing processes.more » « less
-
Abstract We investigate the kinematic properties of Galactic H ii regions using radio recombination line (RRL) emission detected by the Australia Telescope Compact Array at 4–10 GHz and the Jansky Very Large Array at 8–10 GHz. Our H ii region sample consists of 425 independent observations of 374 nebulae that are relatively well isolated from other, potentially confusing sources and have a single RRL component with a high signal-to-noise ratio. We perform Gaussian fits to the RRL emission in position-position–velocity data cubes and discover velocity gradients in 178 (42%) of the nebulae with magnitudes between 5 and 200 m s − 1 arcsec − 1 . About 15% of the sources also have an RRL width spatial distribution that peaks toward the center of the nebula. The velocity gradient position angles appear to be random on the sky with no favored orientation with respect to the Galactic plane. We craft H ii region simulations that include bipolar outflows or solid body rotational motions to explain the observed velocity gradients. The simulations favor solid body rotation since, unlike the bipolar outflow kinematic models, they are able to produce both the large, >40 m s − 1 arcsec − 1 , velocity gradients and also the RRL width structure that we observe in some sources. The bipolar outflow model, however, cannot be ruled out as a possible explanation for the observed velocity gradients for many sources in our sample. We nevertheless suggest that most H ii region complexes are rotating and may have inherited angular momentum from their parent molecular clouds.more » « less
-
The present-day metallicity structure of the Galactic disk is the product of billions of years of chemodynamical evolution. We use the National Radio Astronomy Observatory Karl G. Jansky Very Large Array to measure 8-10 GHz radio continuum and hydrogen radio recombination line (RRL) emission toward 82 Galactic HII regions. Since collisionally excited lines from metals (e.g., oxygen, nitrogen) are the primary cooling mechanism in ionized gas, the HII region electron temperature is empirically correlated to the nebular metallicity. We use the RRL-to-continuum ratio to derive electron temperatures and infer metallicities of these Galactic HII regions. Including previous single dish studies, there are now 167 nebulae with radio-determined electron temperatures and either parallax or kinematic distance determinations. The HII region oxygen abundance gradient across the Milky Way disk has a slope of -0.052 ± 0.004 dex/kpc. We find significant azimuthal structure in the metallicity distribution. The slope of the oxygen abundance gradient varies by a factor of ~2 between Galactocentric azimuths of 30 degrees and 100 degrees. Such azimuthal structure is consistent with simulations of Galactic chemodynamical evolution influenced by spiral arms.more » « less
An official website of the United States government

Full Text Available